Recurrent neuro-fuzzy system for fault detection and isolation in nuclear reactors
نویسندگان
چکیده
This paper presents an application of recurrent neuro-fuzzy systems to fault detection and isolation in nuclear reactors. A general framework is adopted, in which a fuzzification module is linked to an inference module that is actually a neural network adapted to the recognition of the dynamic evolution of process variables and related faults. Process data is fuzzified in order to reason rather on qualitative than on quantitative values. The fuzzified attributes feed the neural network. Two different network topologies are tested over data simulated by a commissioned simulator of a nuclear reactor: a feed-forward topology and a recurrent topology, where the additional network inputs are considered as delayed activation of output units. The later approach shows better generalization performance for the detection and isolation of a number of security related faults. A graphic interface presents a qualitative representation of symptoms and diagnostic results by colored shades that evolve with time allowing a friendly and efficient communication with operators in charge of the process security. q 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
Fault Detection and Isolation of Vehicle Driveline System
Vehicle driveline system and its working accuracy play an important role in the performance of car. The purpose of this study is to provide an appropriate mechanism for investigating, identifying and determining the position and size of defects in the vehicle power transmission system. This is based on the patterns of the residual signal, obtained from a simulated model of the system. Neuro-...
متن کاملA TSK-Type Recurrent Neuro-Fuzzy Systems for Fault Prognosis
As a result from the demanding of process safety, reliability and environmental constraints, a called of fault detection and diagnosis system become more and more important. In this article some basic aspects of TSK (Takigi Sugeno Kang) neuro-fuzzy techniques for the prognosis and diagnosis of manufacturing systems are presented. In particular, a neuro-fuzzy model that can be used for the ident...
متن کاملFault Diagnosis Using Neuro-fuzzy Systems with Local Recurrent Structure
This paper investigates the development of the Adaptive Neuro-Fuzzy Systems with Local Recurrent Structure (ANFS-LRS) and their application to Fault Detection and Isolation (FDI). Hybrid learning, based on a fuzzy clustering algorithm and a gradientlike method, is used to train the ANFS-LRS. The experimental case study refers to an application of fault diagnosis of an electro-pneumatic actuator...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملVoting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Engineering Informatics
دوره 19 شماره
صفحات -
تاریخ انتشار 2005